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Abstract

An extended technicolor model is constructed. Quark and lepton masses,
spontaneous CP violation, and precision electroweak measurements are dis-
cussed. Dynamical symmetry breaking is analyzed using the concept of the big
MAC.

1 Introduction

Recent work [1, 2, 3, 4, 5] on technicolor (TC) models indicates that it may be possi-

ble to describe the observed particle mass spectrum, while avoiding flavor changing

neutral currents (FCNC’s) and satisfying precision electroweak tests. That is, us-

ing a phenomenologically acceptable TC gauge group and technifermion count, and

representing the extended technicolor (ETC) interactions by four-fermion interac-

tions with arbitrary mass scales and arbitrary couplings for each of the ordinary

fermions, one can produce the entire observed range of fermion masses, up to well

over one hundred GeV for the t quark, without excessive fine tuning of parameters

and without any phenomenological disasters. Though this exercise is interesting as
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a sort of existence proof, it uses as many parameters as observables, so it is difficult

to be sure if success is the result of having identified the correct physics.

To do better one must construct a model that explains the world rather than

just describes it, i.e. a model with fewer parameters than the standard model.

It is our purpose here to construct a plausible ETC model. After reviewing the

constraints that must be satisfied, we will present the model. We then conclude

with a discussion of quark and lepton masses, precision electroweak tests, and CP

violation. One additional prediction for new phenomena will also be described.

2 Ingredients for Model Building

There are several ingredients that should be incorporated into a realistic ETC model.

First of all, more than one ETC scale is expected. The absence of FCNC’s (inferred

from K − K mass splitting) requires the mass of the ETC bosons that connect

to the s quark to be at least1 about ΛFCNC = 1000 TeV cos θ sin θ, where θ is

a model dependent mixing angle [7, 8]. For example, taking θ to be equal to the

Cabibbo angle, we find ΛFCNC = 200 TeV. In order to have such a high ETC scale

associated with the s, and still produce the correct mass, one may have to invoke

walking [1]. Also, to obtain a t quark mass above 100 GeV without excessive fine

tuning, it turns out that the ETC scale relevant to t mass generation should be

at most about 10 TeV [2]. Such arguments, coupled with the observation of the

hierarchy of family masses, suggest three different ETC scales, one for each family.

In this paper we will take these scales to be roughly 10, 100, and 1000 TeV. With

a reasonable running of gauge couplings, these scales can arise naturally via self-
1Assuming a coupling of order 1, and the absence of a “TechniGIM” mechanism [6].
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breaking gauge interactions, and may thus afford us with a natural explanation of

the family mass hierarchy.

A realistic ETC model must also survive precision electroweak tests [9, 10].

It must produce a large t-b mass splitting, while keeping the radiative electroweak

correction parameter ∆ρ∗ ≡ αT less than about 0.5%. The radiative electroweak

correction parameter S can also be worrisome [10]. Experiments seem to be finding

S to be very small or even negative, whereas QCD-like TC models give positive

contributions to S (which grow with the number of technicolors, NTC). Of course,

QCD-like TC models may already be ruled out since they lead to large FCNC’s, and

furthermore it is difficult to reliably estimate S in TC models with non-QCD-like

dynamics [11]. Nevertheless, the constraint on the S parameter seems to suggest

that NTC should be kept as small as possible.

An important constraint on ETC model building was originally elucidated by

Eichten and Lane [7], who showed that the absence of a visible axion implies a limit

on the number of spontaneously broken global U(1) symmetries2, and hence a limit

on the number of irreducible representations of the ETC gauge group. This points

to some form of quark-lepton unification (such as Pati-Salam unification [13]), in

ETC models.

Also, to avoid a plethora of massless, non-Abelian, Nambu-Goldstone bosons,

a realistic ETC model should not have any exact, spontaneously broken, non-

Abelian global symmetries. Thus there should not be repeated representations

of the ETC gauge group.

An ETC model must also explain why neutrinos are special. The fact that
2Another possibility is that the axion is made very heavy by QCD, see ref. [12].
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only extremely light left-handed neutrinos are seen in nature is one of the most puz-

zling features of the quark-lepton mass spectrum. It poses special problems for ETC

model builders, since it is difficult to construct ETC models without right-handed

neutrinos. With right-handed neutrinos present in the model, there are at least two

simple explanations available for small neutrino masses: an implementation of the

usual seesaw mechanism [14, 15], or the possibility that the technifermion masses

do not feed down directly to the neutrinos. The latter possibility was suggested

long ago by Sikivie, Susskind, Voloshin, and Zakharov (SSVZ) [16]. The model to

be discussed in this paper will utilize this mechanism.

SSVZ considered an SU(3)ETC gauge group (which will appear in our model

below 100 TeV), where a 3 of SU(3)ETC corresponds to two technifermions and one

third-generation fermion. SU(3)ETC will be broken to SU(2)TC by another strong

gauge interaction, referred to here as hypercolor (HC). The idea of SSVZ is to put

leptons in unusual ETC representations. The left-handed leptons are placed in 3’s

of SU(3)ETC ; the charge-conjugated, right-handed charged-leptons in 3’s; and the

charge-conjugated, right-handed neutrinos in 3’s. When SU(3)ETC breaks, all the

technileptons are in equivalent SU(2)TC representations, but the ETC interactions

of the ντ are different from those of the τ . In fact, it can be shown that to leading

order in ETC exchange, the ντ does not receive a mass. ETC interactions must of

course be extended beyond SU(3)ETC . The ντ may receive a mass in higher orders

in these interactions, but, as we will discuss later, in the model to be presented, at

two loops, the ντL will remain massless.

Our model will also ensure that the muon neutrino (νµ) mass vanishes to

a sufficiently high order in perturbation theory so as to satisfy the experimental
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constraint on its mass. This will arise through a simple extension of the SSVZ

mechanism to the second generation.

Whether or not the SSVZ mechanism is extended to the first generation,

there would be other contributions to the νe mass that are much too large. If

quarks and leptons are unified (as they must be in a realistic ETC model), then

masses can feed down to νe from ordinary fermions as well as technifermions. For

example, consider a Pati-Salam [13] unification scheme. The νe is placed in the

same representation as the u quark, and there is a diagram that feeds the u quark

mass down to the νe through the exchange of a heavy Pati-Salam gauge boson3.

A standard calculation (for simplicity taking the Pati-Salam breaking scale, which

provides the cutoff for the calculation, to be equal to the ETC scale of the first

generation) then gives:

mνe ≈
9αPS

8π
mu . (1)

This gives a mass for the νe on the order of a fraction of an MeV, far above the

experimental bound. In order to avoid such a disaster, the right-handed neutrino

that is unified with the right-handed u quark must get either a large Majorana mass

with itself, or a large Dirac mass with another SU(2)L singlet neutrino. The model

presented here will employ the later possibility, and as a result there will be no

right-handed neutrino in the first family.

Another problem that ETC models must face is intrafamily mass splittings.

The most striking such splitting, and the most difficult to account for in models

with a family of technifermions, is the t-τ splitting. One possible solution is that
3In a self-consistent calculation one should also include the νe self-energy coming from a single

Pati-Salam gauge boson exchange.
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this splitting comes from QCD effects [17, 18]. It is possible for small perturbations

(like QCD) to have large effects in models where the (strong) ETC coupling is near

critical [2]. One calculation [18] found that this effect could give a quark mass up

to two orders of magnitude larger than that of the corresponding lepton. We will

rely on the efficacy of this mechanism in our model.

3 A Realistic ETC Model

We now construct an ETC model, using the smallest possible TC group: SU(2)TC .

One family of technifermions will be included, since this allows for the smallest

possible ETC gauge group. We require that:

1) there are no exact non-Abelian global symmetries,

2) quarks and leptons are unified so as to avoid a visible techniaxion,

3) fermions are only allowed to be singlets or triplets of SU(3)C , i.e. we

eschew quixes, queights, etc.,

4) all gauge anomalies vanish,

5) the standard model gauge groups are not embedded in the ETC group,

6) the ETC gauge group is asymptotically free,

7) the SSVZ mechanism is incorporated in order to keep the ντ light,

8) isospin and CP are not explicitly broken.

With these restrictions we can proceed straightforwardly. Starting with

SU(2)TC , the simplest way to gauge the family symmetries is to make use of

SU(5)ETC . In order to get a hierarchy of families, this gauge group should break
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down in stages (i.e. SU(5)ETC → SU(4)ETC → SU(3)ETC → SU(2)TC). In order

to avoid a visible techniaxion, as discussed above, quarks and leptons are unified us-

ing the Pati-Salam [13] group SU(4)PS . In order to break SU(4)ETC and SU(3)ETC

down to SU(2)TC , we will need an additional strong gauge group: SU(2)HC . Thus,

the gauge group for the model is taken to be SU(5)ETC ⊗ SU(2)HC ⊗ SU(4)PS ⊗

SU(2)L ⊗ U(1)R. The breaking scale for all these interactions will be on the order

of 1000 TeV or lower.

To insure that the model contains only 3’s, 3’s, and singlets of color, fermions

are placed only in antisymmetric irreducible representations [19] of SU(4)PS . As

usual, the U(1)R is required in order to get the correct hypercharges for the right-

handed fermions. Since, at the Pati-Salam breaking scale, ΛPS , the U(1)R will mix

with a generator of SU(4)PS (with αPS(ΛPS) ≈ 0.07), the U(1)R coupling must

be very weak in order to get the right U(1)Y coupling in the low-energy effective

theory. The U(1)R gauge group looks like a remnant of an SU(2)R, but left-right

symmetry has not been introduced since we expect that the requirement that the

SU(2)L and SU(2)R gauge couplings be equal at the SU(2)R breaking scale would

put this scale much higher than those being considered here. The reason for this is

that the U(1)R coupling at ΛPS is much weaker than the SU(2)L coupling at this

scale.

The standard model fermions and one family of technifermions can be con-

tained in the following representations 4:

(5,1,4,2)0 (5,1,4,1)−1 (5,1,4,1)1 . (2)

4Throughout we will make use of the convention of using the charge-conjugates of the right-
handed fields instead of the right-handed fields themselves.
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If these were the only fermions in the model, there would be no isospin splittings

and no CKM mixing angles. Thus we must include additional fermions that can mix

with some of the ordinary fermions, so that isospin breaking can arise spontaneously.

To motivate the choice of additional fermions, we next consider how to in-

clude CP violation in the model, without producing a strong-CP problem. This can

be done if the Nelson-Barr solution to the strong-CP problem [20] can be imple-

mented in our model. The Nelson-Barr mechanism allows complex phases to appear

in the mass mixing between the standard model quarks and new exotic quarks. The

determinant of the mass matrix, however, must remain real. To begin, this mecha-

nism requires, in addition to the standard fermions already discussed, some exotic

quarks that can mix with the ordinary quarks. These quarks should be SU(2)L sin-

glets, so as not to contribute to S. The simplest way to do this (keeping in mind the

restriction to antisymmetric representations) is to include particles that transform

as (6,1)0 under SU(4)PS ⊗ SU(2)L ⊗ U(1)R. Such representations will decompose

into particles with standard model quantum numbers (3,1)2/3 and (3,1)−2/3. These

correspond respectively to a charge-conjugate, right-handed, down-type quark, and

a left-handed partner with which it can obtain a gauge invariant mass. One such

“vector” quark and one hypercolored “vector” quark will be included, which we will

refer to as the m and the G respectively. The G will be responsible for feeding down

a mass to the m, and will also slow the running of the HC coupling above 10 TeV.

We will return to a discussion of CP violation in section 4.

We also need extra particles to incorporate the SSVZ mechanism. Since

they must have the quantum numbers of right-handed neutrinos, we can make use

of the simplest possibility: that they are SU(4)PS ⊗ SU(2)L ⊗ U(1)R singlets. It
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can now be seen how isospin breaking can appear spontaneously in the model. The

fermions of the standard model come from 4’s and 4’s of SU(4)PS . The additional

Pati-Salam representations to be included are 1’s and 6’s, and these give only right

handed neutrinos and “vector” down-type quarks. Thus there will be extra particles

that can mix with neutrinos and down-type quarks, allowing for isospin breaking

masses, and mixing angles.

We now explicitly write down the model. The gauge group is SU(5)ETC

⊗SU(2)HC ⊗ SU(4)PS ⊗ SU(2)L ⊗ U(1)R, with the fermion content taken to be:

(5,1,4,2)0 (5,1,4,1)−1 (5,1,4,1)1 (3)

(1,1,6,1)0 (1,2,6,1)0 (4)

(10,1,1,1)0 (5,1,1,1)0
(10,2,1,1)0 .

(5)

The (5,1,4,2)0, the (5,1,4,1)−1, and the (5,1,4,1)−1 in this list contain parti-

cles with quantum numbers corresponding to three families of ordinary fermions

(plus charge-conjugated, right-handed neutrinos) and one family of technifermions,

i.e. the 5 of SU(5)ETC corresponds to three families and two technicolors. The

additional fermions are an economical set that will allow us to break ETC gauge

symmetries, and isospin, as well as to incorporate the Nelson-Barr mechanism for

CP violation. Note that the extra neutrino sector listed in (5) makes this a chiral

gauge theory with respect to the gauge groups SU(5)ETC and SU(2)HC . All the

non-Abelian gauge interactions in the model are asymptotically free.

Next the pattern of symmetry breaking must be specified. An attractive

and economical idea is that the breaking is completely dynamical, driven by the

asymptotically free gauge theory itself at each stage (this phenomena is referred to
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as “tumbling” [21]). Folklore then has it that the fermion condensates form in the

most attractive channel (MAC) [21, 22]. The MAC is usually determined in one

gauge boson exchange approximation, neglecting gauge boson masses that will be

formed if the condensate breaks the gauge group. The one-gauge-boson exchange

approximation may or may not be reliable5, and furthermore, the additional ap-

proximation of neglecting gauge-boson mass generation could be misleading. We

will nevertheless adopt the MAC criterion here as a guideline.

We will argue that the breaking will in fact take place in the phenomeno-

logically desired breaking channel at the lower ETC scales (approximately 100 TeV

and below). For this purpose we will require that the SU(5)ETC and SU(2)HC

couplings are relatively strong in order to drive the tumbling. (By contrast, the

other gauge groups in the model, which produce the weakly coupled interactions of

the standard model, will be too feeble to drive dynamical symmetry breaking.) At

ETC scales of about 1000 TeV and above, the phenomenologically correct breaking

channel will not be the MAC, and it will be necessary to assume that the breaking

occurs in the desired channel. We take this as evidence that our model is complete

below 1000 TeV, but perhaps not complete at higher scales.

Thus, to begin, we assume that the relatively strong SU(5)ETC gauge inter-

actions and some additional new physics from higher scales trigger the formation of

a condensate at the scale ΛPS somewhat above 1000 TeV in the attractive channel

(5,1,4,1)−1 × (5,1,1,1)0 → (1,1,4,1)−1. This breaks the U(1)R and Pati-Salam

symmetry, leading to the gauge group SU(5)ETC ⊗SU(2)HC ⊗SU(3)C ⊗SU(2)L⊗
5Some evidence for the reliability of the ladder approximation is discussed in ref. [23].
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U(1)Y below ΛPS . Hypercharge, Y , (normalized by Q = T3L + Y/2) is given by

Y = QR +
√

8
3
T15 , (6)

where the SU(4)PS generator T15 =
√

3
8 diag(1

3 ,
1
3 ,

1
3 ,−1) is the B − L generator,

and QR is the U(1)R charge. Note that the (1,1,4,1)−1 condensate will give a

large mass to the right-handed neutrinos that were unified with up-type quarks.

This avoids the problem of quark masses feeding down to neutrino masses through

Pati-Salam interactions, discussed in Section 2.

The MAC 6 for SU(5)ETC is 10 × 10 → 1. The (massless) one-gauge-

boson approximation gives a crude measure of the strength of the interaction, and

we will use this as a guideline throughout the paper. In this approximation the

interaction strength in this channel is proportional to the difference of Casimirs,

∆C2 = C2(10) + C2(10) − C2(1) = 36/5. By contrast, the channel in which

condensation is assumed here is the second most attractive channel (with respect to

SU(5)ETC) with ∆C2 = 24/5. As pointed out above, some additional new physics

at ΛPS and above may be necessary to produce the condensate in this channel.

The fermion content of the model below the Pati-Salam breaking scale, ΛPS ,

(labeled by SU(5)ETC ⊗ SU(2)HC ⊗ SU(3)C ⊗ SU(2)L ⊗ U(1)Y ) is:

(5,1,3,2)1/3 (5,1,1,2)−1

(5,1,3,1)−4/3

(5,1,3,1)2/3 (5,1,1,1)2
(7)

(1,1,3,1)−2/3 (1,1,3,1)2/3

(1,2,3,1)−2/3 (1,2,3,1)2/3
(8)

6In our model this condensate would break the SU(2)HC group. Thus this channel may be
disfavored given that SU(2)HC is relatively strong, since the broken HC gauge bosons will give a
large positive contribution to the energy of the corresponding vacuum.
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(10,1,1,1)0 (10,2,1,1)0 . (9)

We have not listed the (5,1,1,1)0 and the (5,1,1,1)0 which have gotten a large

Dirac mass from the dynamical symmetry breaking. We note that, except for U(1)Y ,

all the remaining gauge groups are asymptotically free.

Next we assume that, at Λ5 ≈ 1000 TeV, a condensate forms in the attractive

channel (10,1,1,1)0 × (10,1,1,1)0 → (5,1,1,1)0. The SU(5)ETC MAC at this

scale would again be 10 × 10 → 1 with ∆C2 = 36/5. This condensate, however,

would break SU(2)HC , and might be disfavored as pointed out in footnote 6. The

assumed breaking channel, 10×10→ 5, is almost as strong with ∆C2 = 24/5, and

it does not break SU(2)HC . Note that the channel (10,2,1,1)0 ×(10,2,1,1)0 →

(5,1,1,1)0 is not a Lorentz scalar7, while (10,2,1,1)0 ×(10,2,1,1)0 → (5,3,1,1)0

is in a repulsive channel with respect to the SU(2)HC interactions, and will be

prevented from forming if this gauge interaction is moderately strong. (Thus the

(10,2,1,1)0 should not develop a Majorana mass.) The condensate (5,1,1,1)0

breaks the gauge symmetry to SU(4)ETC ⊗SU(2)HC ⊗SU(3)C ⊗SU(2)L⊗U(1)Y ,

and the first family breaks off at this scale. The fermion content below 1000 TeV is

(labeled according to SU(4)ETC ⊗ SU(2)HC ⊗ SU(3)C ⊗ SU(2)L ⊗ U(1)Y ):

(1,1,3,2)1/3 (4,1,3,2)1/3 (1,1,1,2)−1 (4,1,1,2)−1

(u, d)L (νe, e)L

(1,1,3,1)−4/3 (4,1,3,1)−4/3

uc
R

(1,1,3,1)2/3 (4,1,3,1)2/3 (1,1,1,1)2 (4,1,1,1)2
dc

R ecR

(10)

7It is assumed here that gauge theories do not spontaneously break Lorentz invariance.

12



(1,1,3,1)−2/3 (1,1,3,1)2/3

mL mc
R

(1,2,3,1)−2/3 (1,2,3,1)2/3

GL Gc
R

(11)

(4,1,1,1)0
(4,2,1,1)0 (6,2,1,1)0 .

(12)

The names of standard model fermions have been written beneath the correspond-

ing group representations (where uc
R = (uR)c). We have also labeled the exotic,

“vector” m quarks which should mix with the down-type quarks, and the hypercol-

ored “vector” G quarks. Note that there is no νc
eR. We also note that all remaining

non-Abelian gauge groups are again asymptotically free.

The next stage of breaking will be driven by the SU(4)ETC and SU(2)HC

interactions. It will be argued to occur in the attractive channel (4,2,1,1)0 ×

(6,2,1,1)0 → (4,1,1,1)0 at a scale taken to be around Λ4 ≈ 100 TeV. This breaks

the gauge symmetry to SU(3)ETC⊗SU(2)HC⊗SU(3)C⊗SU(2)L⊗U(1)Y , and the

second family splits off at this scale. This channel is not the MAC for SU(4)ETC

alone: 6 × 6 → 1 (∆C2 = 5) and 4 × 4 → 1 (∆C2 = 15/4) are more attractive.

Nevertheless, both 4 × 6 → 4 for SU(4)ETC (∆C2 = 5/2), and 2 × 2 → 1 for

SU(2)HC (∆C2 = 3/2) involve very attractive interactions (the latter is in fact the

MAC for SU(2)HC). We will next argue that the sum of these two interactions

favors the chosen channel over all others.

It is not difficult to see that the most competitive other channel is the one

involving the SU(4)ETC MAC: (6,2,1,1)0×(6,2,1,1)0 → (1,3,1,1)0. To compare

these two channels, we compute for each the sum of the gauge couplings evaluated
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at Λ4, squared and weighted by the difference of Casimirs in the various channels.

It is this combination that will appear in an effective potential, or gap equation

analysis. For the channel involving the SU(4)ETC MAC, we have

∆C2(6× 6→ 1)α4(Λ4) + ∆C2(2× 2→ 3)α2(Λ4) = 5α4(Λ4)−
1
2
α2(Λ4) , (13)

while for the desired channel we obtain

∆C2(4× 6→ 4)α4(Λ4) + ∆C2(2× 2→ 1)α2(Λ4) =
5
2
α4(Λ4) +

3
2
α2(Λ4) . (14)

Thus if α2(Λ4) > 5
4 α4(Λ4) then (14) will be larger than (13), and the desired

channel will be preferred over the other. We assume that this is the case. Note

that as long as α2(Λ4) < 5
3 α4(Λ4), then it is still the SU(4)ETC interactions that

make the dominant contribution to the dynamical symmetry breaking in the desired

channel. A simple gap equation analysis (with constant couplings) indicates that

dynamical symmetry breaking will proceed when ∆C2(4×6→ 4)α4(Λ4)+∆C2(2×

2 → 1)α2(Λ4) reaches a critical value of 2π/3. More sophisticated analyses that

include the effects of running and gauge boson masses generally find that 2π/3 is

an underestimate of the critical value.

It is instructive to compare our analysis with a conventional MAC analysis,

where one would compare the SU(4)ETC MAC with the SU(2)HC MAC, i.e. com-

pare the first term in (13) with the second term in (14). Then one would find that

as long as α2(Λ4) < 10
3 α4(Λ4), the SU(4)ETC interaction in channel (13) would

be dominant. The 6× 6 → 1 channel would be preferred for condensation, which,

for the range of couplings discussed above, would be the opposite conclusion to our

more refined analysis. To summarize, we have suggested that when two (or more)

relatively strong gauge interactions are at play, the favored breaking channel will be
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determined by the sum of the interactions. As in the present example, the favored

channel need not be the one involving the MAC of the strongest single interaction.

We refer to the favored channel in this case as the big MAC. We assume that the

coupling constants are in the correct range for the big MAC to be preferred.

The fermion content below Λ4 (labeled according to SU(3)ETC⊗SU(2)HC⊗

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ) is:

2(1,1,3,2)1/3 (3,1,3,2)1/3 2(1,1,1,2)−1 (3,1,1,2)−1

(u, d)L, (c, s)L (νe, e)L, (νµ, µ)L

2(1,1,3,1)−4/3 (3,1,3,1)−4/3

uc
R, c

c
R

2(1,1,3,1)2/3 (3,1,3,1)2/3 2(1,1,1,1)2 (3,1,1,1)2
dc

R, s
c
R ecR, µ

c
R

(15)

(1,1,3,1)−2/3 (1,1,3,1)2/3

mL mc
R

(1,2,3,1)−2/3 (1,2,3,1)2/3

GL Gc
R

(16)

(1,1,1,1)0 (3,1,1,1)0
νc

µR

(1,2,1,1)0 (3,2,1,1)0
X F .

(17)

All the non-Abelian gauge groups at this stage are asymptotically free. We expect

that the gauge couplings α2(Λ4) and α3(Λ4) are in the neighborhood of 0.5. For

example, the values α2(Λ4) ≈ 0.61 and α3(Λ4) ≈ 0.47 are consistent with the big

MAC analysis described above.

We note that the correct fermion content is now in place to employ the SSVZ
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mechanism. Consider the technifermions and third generation fermions (which

transform under SU(3)ETC). The charge-conjugated, right-handed ντ and tech-

nineutrino are in a 3 (see line (17)) of SU(3)ETC as opposed to charge-conjugated,

right-handed, quarks and charged leptons, which are in 3’s. Note that the particle

that will turn out to be the νc
µR has come out of the extra neutrino sector. We also

note that the original fermion content (in lines (4) and (5)) above the Pati-Salam

breaking scale did not suffer from Witten’s anomaly [24] for the SU(2)HC gauge

group. This ensures the presence of the particle we have labeled X, which did not

appear in the original SSVZ toy model [16].

The final stage of ETC breaking occurs when the SU(2)HC and SU(3)ETC

interactions get somewhat stronger, at a scale Λ3 that will be roughly estimated to

be around 10 TeV. The desired channel is the one in which the F condenses with

itself: (3,2,1,1)0 × (3,2,1,1)0 → (3,1,1,1)0, breaking SU(3)ETC to SU(2)TC .

This is the MAC for SU(2)HC , and an attractive channel for SU(3)ETC . The

combination of the two interactions ensures that the F condenses with itself rather

than with the X or the G, and provides another example of a big MAC. Again, as

a guideline, we consider the sum of the gauge couplings, squared and weighted by

the difference of Casimirs for this channel:

∆C2(3× 3→ 3)α3(Λ3) + ∆C2(2× 2→ 1)α2(Λ3) =
4
3
α3(Λ3) +

3
2
α2(Λ3). (18)

Condensation should occur when expression (18) is about 2π/3.

Note that since the coefficient of α3(Λ3) in (18) is less than the coefficient of

α4(Λ4) in (14), α3(Λ3) must be larger than α4(Λ4) in order for dynamical symmetry

breaking to occur at both Λ3 and Λ4. This is consistent with the asymptotic freedom
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of the SU(3)ETC and SU(2)HC gauge groups in our model. Some walking (recall

that the “vector” G quarks help to reduce the one-loop HC β-function) of the HC

gauge coupling will be required to make this condensation occur at a low enough

scale (≈ 10 TeV).

For comparison, the MAC for SU(3)ETC is 3 × 3 → 1. (Note that all the

3’s of SU(3)ETC in the model are SU(2)HC singlets, so there is no possibility of

additional interactions to assist the condensation in this channel.) For this channel,

the squared coupling weighted by the difference of Casimirs is:

∆C2(3× 3→ 1)α3(Λ3) =
8
3
α3(Λ3) . (19)

Thus for α2(Λ3) > 8
9α3(Λ3), expression (18) is larger than (19), and the breaking

proceeds as required: (3,2,1,1)0 × (3,2,1,1)0 → (3,1,1,1)0.

The condensate (3,1,1,1)0 breaks the ETC gauge symmetry down to TC:

SU(2)TC ⊗ SU(2)HC ⊗ SU(3)C ⊗ SU(2)L ⊗ U(1)Y . The component of F that is

neutral under TC does not get a mass from this condensate. This component does

however condense with the X, at a slightly lower scale, ΛHC . The G quarks will

also condense at ΛHC . Since the HC coupling is quite strong at Λ3 ≈ 10 TeV, with

a standard running of this coupling ΛHC will be very close to Λ3. Hypercolored

particles are confined at ΛHC , and the HC sector decouples from ordinary fermions

and technifermions. We then have a one-family TC model, with an additional

“vector” quark, m.

The fermion content below Λ3 ≈ 10 TeV (labeled according to SU(2)TC ⊗
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SU(3)C ⊗SU(2)L ⊗ U(1)Y ) is:

3(1,3,2)1/3 (2,3,2)1/3 3(1,1,2)−1 (2,1,2)−1

(u, d)L, (c, s)L, (t, b)L (U,D)L (νe, e)L, (νµ, µ)L, (ντ , τ)L (N,E)L

3(1,3,1)−4/3 (2,3,1)−4/3

uc
R, c

c
R, t

c
R U c

R

3(1,3,1)2/3 (2,3,1)2/3 3(1,1,1)2 (2,1,1)2
dc

R, s
c
R, b

c
R Dc

R ecR, µ
c
R, τ

c
R Ec

R

(20)

(1,3,1)−2/3 (1,3,1)2/3

mL mc
R

(21)

2(1,1,1)0 (2,1,1)0
νc

µR, ν
c
τR N c

R .
(22)

Note that 2’s and 2’s of SU(2)TC are equivalent. All interactions except U(1)Y are

asymptotically free. The model at this stage consists of the usual three families (left

and right-handed except that there is no right-handed νe), one conventional family

of technifermions, and the “vector” quark m.

At the technicolor scale ΛTC , the SU(2)TC coupling becomes strong enough

that 3
2π∆C2(2 × 2 → 1)αTC(ΛTC) = O(1). Technifermions then get dynamical

masses, SU(2)L×U(1)Y breaks to U(1)em, and the masses of the quarks and leptons

are generated by the ETC interactions linking the various particles in (20) and (22).

We turn next to a description of these masses and other features of the model.

4 Features and Problems of the Model

In this section we will discuss the mass spectrum of ordinary fermions, some of the

phenomenology of the TC sector, and CP violation. To begin we note that the
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three, well-separated, ETC scales in the model provide a natural starting point for

an explanation of the pattern of family masses. Furthermore, as we will discuss in

more detail below, it is possible that QCD interactions will adequately split quark

masses from lepton masses. The combination of the above mentioned effects with

the SSVZ mechanism (which suppresses neutrino masses) will then generate the

overall gross features of the quark and lepton spectrum.

We first discuss the masses of the third family (t,b,ντ ,τ). We note that in a

moderately walking TC theory, Λ3 ≈ 10 TeV is a natural scale to generate the mass

of the τ . In order to explain the t− τ hierarchy of nearly two orders of magnitude

it will be assumed that the ETC interactions linking the t to the U are near-critical

[2] at Λ3, i.e. α3(Λ3) is very close to, but below, a critical value αc(3), given by a

crude Schwinger-Dyson equation (in the ladder approximation8) analysis to be

αc(3) =
2π

3 ∆C2(3× 3→ 1)
=
π

4
. (23)

Then as pointed out in Section 2, the additional effect of the QCD interaction in the

gap equation for the t and U can dramatically enhance mt relative to mτ [18]. In

particular, if α3(Λ3) is within 1-10% of αc(3), then it is possible to produce an mt in

the 150 GeV range with mτ = 1.8 GeV. We note that if α3(Λ3) is near-critical, then

the mass of the techniquarks (which sets the scale for the W and Z masses) can be

substantially larger than the intrinsic TC scale, ΛTC . The scale ΛTC could be as

low as 100 GeV [5]. Since αTC(Λ3) = α3(Λ3), the TC coupling must be moderately

walking from Λ3 down to ΛTC in order for ΛTC to be much smaller than Λ3. For

the TC coupling in this range, the perturbative expansion for the β function may be

unreliable. The same is true for some of the ETC and HC gauge couplings relevant
8See footnote 5.
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at higher scales. In this paper, we will not attempt to compute these β functions.

Instead, we will simply point out the qualitative behavior that is necessary in each

energy range.

Consider the ETC and HC couplings in the range from Λ4 ≈ 100 TeV to Λ3 ≈

10 TeV. Suppose, as discussed in section 3, that the SU(2)HC coupling α2(Λ4) =

0.61, and α4(Λ4) = 0.47. This makes expression (14) equal to 2π/3, and α2(Λ4) >

5
4 α4(Λ4). For the model to work, the coupling α3 must walk from Λ4 to Λ3 be near

αc(3) = π/4 ≈ 0.8 at Λ3. Also α2 must be walking in order for Λ3 to be an order of

magnitude smaller than Λ4.

In order to estimate masses of the quarks and leptons, we need estimates for

the condensates of the technifermions. However our model is far from QCD-like,

so we cannot simply scale-up the QCD condensate. Instead we use the t and τ

masses as inputs to determine the relevant condensates, and use these estimates to

calculate the masses of particles in the second and first families. We expect that

the τ mass is given roughly by the standard one-ETC-gauge-boson-exchange graph:

mτ ≈ 3πα3(Λ3)
< EREL >

Λ2
3

. (24)

The coefficient 3πα3(Λ3) can be understood as follows. The one-ETC-gauge-boson-

exchange graph is given by 3α3(Λ3)C/(4π) times an integral of the technielectron

self-energy. This integral is 4π2 times the technielectron condensate9 < EREL > .

The constant C comes from the squares of ETC generators, and for the represen-

tations in our model turns out to be N/2, where N is the number of heavy ETC

gauge bosons which contribute to the graph. For SU(3)ETC → SU(2)TC , N = 2;
9Our convention for the condensate is the negative of the more usual convention.
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for SU(4)ETC → SU(3)ETC , N = 3, and so on. Thus, rewriting equation (24), we

take the charged-technilepton condensate to be:

< EREL > ≈ 4
3π2

mτΛ2
3

≈ 0.024 TeV3 . (25)

Since the mass of the t is comparable to the techniquark mass, the corre-

sponding Schwinger-Dyson equations are near-critical and non-linear, and we do

not expect a simple formula like (24) to apply for mt. We expect that just below

Λ3, the dynamical mass of the U techniquark, ΣU , is roughly constant (for a larger

range than the technilepton mass), and is close to mt. Thus, we will simply use the

estimate:

< URUL > ≈ 1
4π2

∫ Λ2
3

0
dk2 k2 ΣU (k)

k2 + Σ2
U (k)

≈ 1
4π2

∫ Λ2
3

0
dk2mt

≈ mtΛ2
3

4π2

≈ 0.38 TeV3 , (26)

where we have made the approximation that the integral is dominated at momenta

near Λ3, and taken mt = 150 GeV.

The mass of the ντ is suppressed as in the SSVZ mechanism described in

Section 2. While the EL and Ec
R transform as a 3 and a 3 under SU(3)ETC , the

NL and N c
R both transform as 3’s. Thus, a Dirac mass will not feed down to the

ντ unless there is some mixing of ETC gauge bosons, since the one ETC gauge

boson exchange graph is identically zero. The ντ does not receive a mass even at

two loops. In fact one can show that a mass cannot feed down to the ντ from the
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technineutrino mass alone, to all orders in perturbation theory. The reason for this

is that the technineutrino mass transforms as part of a 3 of SU(3)ETC , while the

ντ mass transforms as part of a 6; the appropriate component of the 6 can only

be made from an even number of 3’s, but there must be an odd number of mass

insertions in order to have a helicity flip. We expect, however, that at three loops

particles other than neutrinos can feed down a mass to the ντ . As we will see

however, there are more important effects that will couple the νc
τR to the νe. We

will return to this when we discuss the first generation.

The remaining member of the third family is the b quark. The mechanism for

generating its mass is quite different from that for the t quark. The t gets its mass

only through the standard one ETC gauge boson exchange, while the b mass can

be suppressed by mixing with the m quark. Since the Schwinger-Dyson equations

for the mass of the b and the mass of the D techniquark are coupled, the reduced

b mass feeds back into the mass (renormalized near the ETC scale, Λ3 ≈ 10 TeV)

of the D techniquark, which lowers its mass, and further lowers the b mass. Thus

this model may not have a problem accommodating a large t-b mass splitting. The

calculation of the b quark mass will require further information about the mixing

with the m quark, which depends on physics at and above 1000 TeV.

With the interactions discussed so far, the m quark remains massless. In

order for it to gain a mass, and to mix with the down-type quarks, there must be

additional physics, which will take the form of higher dimension operators in the

low-energy effective theory below Λ5 ≈ 1000 TeV. An example of an operator that
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would give the m a mass is:

L4f =
g2

Λ2
5

GRGLmRmL + hermitian conjugate , (27)

where we expect g2/4π to be O(1). Then when the G gets a mass at ΛHC , this

mass will feed down to the m through the four-fermion operator (27). In order to

estimate this mass, we will need the value of the condensate < GRGL > cut off

at the scale Λ5. We recall that the anomalous dimension of the mass operator (in

ladder approximation10) in an SU(N) gauge theory is:

γN (α) = 1−
√

1− α

αc(N)
, (28)

where αc(N) is the generalization of equation (23) to the appropriate gauge group,

and we are assuming α < αc(N). We also recall that for an extremely slowly

running coupling between the symmetry breaking scale µ and a larger scale Λ, the

condensate < ψψ > cut off at Λ is roughly given by

< ψψ >Λ ≈< ψψ >µ

(
Λ
µ

)γN (α)

. (29)

Of course the coupling does run; for the purposes of a crude calculation we

will use an average coupling α. In order to make an estimate, we split the range

of momenta into two, from ΛHC ≈ Λ3 ≈ 10 TeV to Λ4 ≈ 100 TeV, and from Λ4

to Λ5 ≈ 1000 TeV. We expect α2 to run from α2(ΛHC) = αc(2) = 4π/9 ≈ 1.4, to

α2(Λ4) ≈ 0.6 (as discussed above) over the lower range. We will take α2(Λ5) = 0.4.

Thus we have α2 = 1 over the lower range, and α2 = 0.5 over the upper range.

We assume that the < GRGL > condensate is at least as big as a scaled-up QCD
10See footnote 5.
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condensate (i.e. 4πf3). The mass of the m is then:

mm ≈ g2

Λ2
5

< GRGL >

(
Λ4

Λ3

)γ2(α2=1.0) (
Λ5

Λ4

)γ2(α2=0.5)

≈ g2

(1000 TeV)2
4π (10 TeV)3

(
100 TeV
10 TeV

)0.5 (
1000 TeV
100 TeV

)0.2

≈ g2 60 GeV . (30)

With g2/4π > 0.2, our estimate for mm is above the current experimental lower

bound (≈ 110 GeV) for such a particle. Of course mm does not correspond to the

physical mass of the m, since it must mix with the down-type quarks, and this could

change the value of the physical mass.

It is also important to comment on the masses of the single family of tech-

nifermions in this model. With the ETC coupling at Λ3 close enough to criticality

so that the t is much heavier than the τ , the techniquarks will be much heavier than

technileptons, [18]. Also, since the technielectron has attractive ETC interactions

in the scalar channel while the technineutrino has repulsive ETC interactions, the

technielectron will be heavier than the technineutrino. Thus this model can provide

a realization of the technifermion mass pattern suggested in ref. [5]. It was shown

there that with this breaking of SU(2)R the electroweak radiative correction param-

eter S will be smaller than is estimated in QCD-like TC models, and may even be

negative. We also expect that the lightness of the technineutrinos will lead to a very

light techni-ρ (composed of technineutrinos and antitechnineutrinos), that may be

light enough to be seen at LEP II [5]. This model will also generate a significant

(mt dependent) correction [25] to the Z → bb vertex, which should be accurately

measured soon. The spectrum of pseudo-Nambu-Goldstone bosons should also be
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similar11 to that sketched out in ref. [5].

Later in this section we will need an estimate of the technineutrino conden-

sate, in order to estimate ordinary neutrino masses. Since the technineutrinos have

repulsive ETC interactions, the integral representing the technineutrino condensate

should converge rapidly above 100 GeV (which we take as an order of magnitude

estimate of the technineutrino mass [5]). So we take

< NRNL > ≈ 1
4π2

∫ Λ2
3

0
dk2 k2 ΣN (k)

k2 + Σ2
N (k)

≈ (100GeV)3

8π2

≈ 1.3× 10−5 TeV3 . (31)

We also note that the vacuum alignment problem [26] of SU(2)TC theories,

with one family of degenerate technifermions, should not be present in this model.

Recall that, in the absence of ETC interactions, the contribution of the (unbroken)

electroweak gauge bosons to the vacuum energy causes the NL to condense with

the EL rather than N c
R. This technilepton condensate breaks U(1)em rather than

SU(2)L, which obviously does not correspond to the observed vacuum12. In our

model, however, the strong ETC interactions will lower the energy of the vacuum

where EL condenses with Ec
R (cf. ref. [4]). Moreover since the techniquarks con-

dense at a higher energy scale, at the scale where the technileptons condense, the

W± and Z have already gotten the bulk of their masses from the techniquark con-

densate, and hence their (destabilizing) contribution to the vacuum energy will be
11However there will be two more pseudo-Nambu-Goldstone bosons in the model discussed here,

since there is no distinction between NL and Nc
R. We leave a detailed examination of the pseudos

for future work.
12By contrast, the techniquark condensate breaks electroweak gauge symmetry in the correct

fashion due to the presence of QCD interactions [26].
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suppressed.

We turn next to a discussion of the second family (c,s,νµ,µ). With a moderate

enhancement from walking, the mass of the µ can be obtained naturally with an

ETC scale of Λ4 ≈ 100 TeV. We know that α3 must run from α3(Λ3) ≈ αc(3) ≈ 0.79

to α3(Λ4) = α4(Λ4) ≈ 0.47 (as discussed earlier), so we take α3 = 0.7. We then

have:

mµ ≈ 9πα4(Λ4)
2

< EREL >

Λ2
4

(
Λ4

Λ3

)γ3(α3)

≈ 6.7
0.024TeV3

(100 TeV)2

(
100 TeV
10 TeV

)0.67

≈ 100 MeV . (32)

The same physics that gives a large t mass will also enhance the c mass

relative to the µ. Assuming that the correct t mass is generated, as discussed

above, we can roughly estimate the c mass as:

mc ≈ 9πα4(Λ4)
2

< URUL >

Λ2
4

(
Λ4

Λ3

)γ3(α3)

≈ 6.7
0.38 TeV3

(100 TeV)2

(
100 TeV
10 TeV

)0.67

≈ 1 GeV . (33)

The results for mµ and mc are quite good for such crude estimates. One could hope

to do better with a more refined analysis of the Schwinger-Dyson equations. We

further expect that mixing with the m quark will reduce the mass of the s quark,

just as in the case of the b quark.

The νµ is the heaviest neutrino in our model. It does not receive a mass at

one loop, but it does at two loops. The extra loop is necessary to mix two different

100 TeV ETC gauge bosons. The mixing breaks SU(3)ETC and SU(4)ETC , and so
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should be of order 10TeV × 100 TeV. Thus we expect the νµ neutrino mass to be

given roughly by:

mνµ ≈ 18π2α2
4(Λ4)

< NRNL >

Λ4
4

Λ3Λ4

16π2

≈ 40
1.3× 10−5 TeV3

(100 TeV)3
10 TeV
16π2

≈ 30 eV . (34)

Note that the coefficient in equation (34) is g2
4(Λ4) = 4πα4(Λ4) times that in equa-

tions (32) and (33), since there is an extra ETC gauge boson exchange. The 1/16π2

is the standard estimate of the suppression due to an extra loop. It is interest-

ing that 30 eV is the right mass for a stable Dirac neutrino to close the universe,

but considerations of structure formation indicate that a lighter neutrino mass is

preferred. However, the neutrino mass estimates in our model are more unreliable

than those of other fermions, since the neutrino masses only arise at two loops, and

there is, as yet, no experimental input to determine the technineutrino condensate

in equation (31).

Finally we briefly discuss the first family (u,d,νe,e). An ETC scale of roughly

Λ5 ≈ 1000 TeV will be sufficient to give naturally the correct mass for the e. To see

this, we again split the range of momenta into two parts, from Λ3 to Λ4, and from

Λ4 to Λ5. As discussed above, α4(Λ4) = 0.47, and we take α4(Λ5) = α5(Λ5) = 0.1.

Thus we have α4 = 0.35. A crude calculation then gives

me ≈ 6πα5(Λ5)
< EREL >

Λ2
5

(
Λ4

Λ3

)γ3(α3) (
Λ5

Λ4

)γ4(α4)

≈ 1.9
0.024 TeV3

(1000 TeV)2

(
100 TeV
10 TeV

)0.67 (
1000 TeV
100 TeV

)0.32

≈ 1 MeV . (35)
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Note that most of the walking enhancement comes from the momentum range 10

TeV to 100 TeV.

The QCD enhancement of the t and c quark masses, discussed above, will

put the u and d masses in the right range of 5− 10 MeV:

mu ≈ 6πα5(Λ5)
< URUL >

Λ2
4

(
Λ4

Λ3

)γ3(α3) (
Λ5

Λ4

)γ4(α4)

≈ 1.9
0.38 TeV3

(1000 TeV)2

(
100 TeV
10 TeV

)0.67 (
1000 TeV
100 TeV

)0.32

≈ 10 MeV . (36)

The estimates for me and mu are encouraging, and again suggest that a more refined

analysis of the Schwinger-Dyson equations is merited. The size and sign of the u−d

mass splitting remains unexplained so far. It must arise from mixing with the m

quark driven by additional, high energy interactions.

At two loops, νeL gets a mass with the νc
τR. As with the νµ we must mix two

different ETC gauge bosons, but in this case only one is associated with SU(5)ETC

breaking (and thus has a mass around Λ5), while the other is associated with

SU(3)ETC breaking (and thus has a mass around Λ3). The mixing term requires

two SU(3)ETC breaking dynamical masses, one from the X−F mass, and one from

the F mass. Thus (taking α3(Λ3) = 0.79, and α5(Λ5) = 0.1) we have

mνe ≈ 12π2α3(Λ3)α5(Λ5)
< NRNL >

Λ2
5 Λ2

3

Λ2
3

16π2

≈ 9.4
1.3× 10−5 TeV3

(1000 TeV)2
1

16π2

≈ 1 eV . (37)

Thus the νc
τR becomes part of a Dirac neutrino, the νe.
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To recap the neutrino sector, at two-loop order we have two Dirac neutrinos

(νµ and νe), while the ντ is purely left-handed. At higher orders, ντL may get a mass

with the νc
τR, but this will only serve to mix the ντL with the νe. We note that this

model does not generate the MSW solution [27] to the solar neutrino problem. We

also note that the extra right-handed neutrinos in this model will pose no problems

for Big Bang nucleosynthesis [28].

The CKM mixing angles among the quarks, and the mixing angles between

down-type quarks and the m quark must arise from new physics at the 1000 TeV

scale and above. This physics may be related to the interactions that were invoked

to break SU(4)PS and SU(5)ETC . Because of this we cannot yet obtain reliable es-

timates of mixing angles, CP violating parameters, and masses of down-type quarks.

Next we turn to the mechanism for CP violation. It was pointed out earlier

that our model contains the additional13 “vector” quark, m, necessary to implement

the Nelson-Barr mechanism. This mechanism can function if the theory is CP

conserving (i.e. θETC = θPS = 0), and if CP is spontaneously broken by the

appearance of complex phases in the masses which connect the ordinary down-type

quarks with the m quark. More specifically the ETC breaking dynamics must give

rise to a (d, s, b,m) mass matrix of the form:

dL sL bL mL

dc
R

sc
R

bcR
mc

R

 real
M1

M2

M3

0 0 0 real

 , (38)

where at least one of M1, M2, and M3 is complex. Under these conditions, CP

violating phases will appear in the CKM matrix of the ordinary fermions, but the
13It may be more realistic to consider models where there is more than one “vector” quark.
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determinant of the mass matrix is real, so the effective strong CP violating parame-

ter θ is identically zero at tree level in the low-energy effective theory. Furthermore,

since the breaking is soft, higher-order corrections will be finite and small. In the

work of Nelson and Barr [20], the form (38) was arranged by a particular choice

of elementary Higgs fields and couplings. Whether this form will appear in our

dynamical model at the appropriate breaking scale is not clear. This will depend

on the details of dynamical breaking at 1000 TeV and above14.

It is worth noting that there is not necessarily a problem with CP domain

walls [29], if inflation occurs and the reheating temperature is below the scale where

CP is spontaneously broken [30]. Since baryogenesis must take place below the

inflationary reheating scale, this scenario is consistent if baryogenesis occurs at the

electroweak scale15. We also note that a TC theory with a family of technifermions

(as ours is) will provide a first-order electroweak phase transition [32] (as opposed

to one-doublet TC models, which have second-order, or extremely weak first-order,

phase transitions [32, 33]), and thus allows for the possibility of electroweak baryo-

genesis.

5 Conclusions

We have constructed a potentially realistic (not obviously wrong) ETC model, that

can incorporate many of the right ingredients: mt � mb, mτ � mντ , a family

hierarchy, no bad FCNC’s, no visible techniaxion, and CP violation with no strong

CP problem. We have made estimates for some of the quark and lepton masses in
14For a discussion of how CP may be broken dynamically see refs. [29, 34].
15For a review of electroweak baryogenesis see ref. [31].
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this model. New physics is expected in the form of a light (less than a few hundred

GeV) techni-ρ composed of light technineutrinos. We stress again that our model

contains an attractive tumbling scheme below 1000 TeV. The phenomenologically

desired channel can be the most attractive when both of the two strong gauge

interactions are taken into account. While there is thus an understanding of how

dynamical symmetry breaking is achieved through tumbling at lower scales, our

understanding of the breaking at high scales is incomplete. This could be a result

of our ignorance of strongly coupled, chiral gauge theories, or it may mean that

the model is not complete at the highest scales. It remains to be seen whether the

model can survive a more detailed scrutiny, and in particular whether extensions

of the model can provide quantitative estimates of down-type quark masses and

mixing angles.
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